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An experiment on the stability of small disturbances 
in a stratified free shear layer 
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Division of Fluid Mechanics, University of California, Berkeley 

(Received 24 June 1971) 

A statically stable stratified free shear layer was formed within the test section 
of a wind tunnel by merging two uniform streams of air after uniformly heating 
the top stream. The two streams were accelerated side by side in a contraction 
section. The resulting sheared thermocline thickened gradually as a result of 
molecular diffusion and was characterized by nearly self-similar temperature 
(odd), velocity (odd) and Richardson number (even) profiles. The minimum 
Richardson number J, could be adjusted over the range 0.07 < J, < 0.76; the 
Reynolds number Re varied between 30 and 70. Small periodic disturbances 
were introduced upstream of the test section by a fine wire oscillating in the 
thermocline. The wire generated a narrow horizontal beam of internal waves, 
which propagated downstream and remained confined within the thermocline. 
The growth or decay of these waves was observed in the test section. The results 
co&m the existence of a critical Richardson number the value of which is in 
plausible agreement with theoretical predictions (J, 2 0-22 for the Reynolds 
number of the experiment). The growth rate is a function of the wavenumber and 
is somewhat different from that computed for the same Reynolds and Richardson 
numbers, but the calculation assumed velocity and density profiles which were 
also somewhat different. 

1. Introduction 
In  aerodynamics, the occurrence of turbulence is strongly associated with shear 

instability. While, of course, it is not true that only shear can destabilize a lami- 
nar flow, the theory of the stability of parallel flows describes substantially the 
circumstances under which we should expect to find turbulent flows. The same 
cannot be said of naturally occurring stratified flows. In  the ocean and the atmos- 
phere statically stable layers of fluid may be disturbed by a number of possible 
circumstances and it is not yet clear which types of perturbation engender 
nonlinear unsteady dynamics and macroscopic mixing. Whenever one associates 
a low Richardson number (large shear, small buoyancy) with an unstable flow 
one implicitly treats shear as a destabilizing parameter characterizing the un- 
disturbed flow. However, shear may not be the primary or f i s t  cause of turbulence 
and mixing in many instances of stratified flows. Consequently an understanding 
of the circumstances under which mixing and turbulence are found in these 
flows may require also, or instead, a study of other sources of instability such as 

t Present address : Woods Hole Oceanographic Institution, Woods Hole, Massechussetts. 
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the steepening of internal waves (from surface wave interaction, depth changes 
or other causes) or the formation of closed streamlines, a characteristic of the flow 
over even small obstacles of stratified fluid at low Proude and therefore usually 
high Richardson number. In  both cases shear may play an important role, but it 
cannot properly be considered a parameter of the flow. 

Nevertheless, the theory of the stability of infinitesimal disturbances in a flow 
which is statically stably stratified and sheared in a specified way has attracted 
the attention of a number of workers, starting with Thomson (1910). There 
exist adequate summaries of this theoretical work (e.g. Yih 1965; Drazin & 
Howard 1966). The work deals with a model of the mean flow which is two- 
dimensional and parallel. The disturbances which are introduced are supposed 
infinitesimal, inviscid? and periodic in the streamwise direction, with a com- 
plex exponential behaviour in time. Thus the disturbance stream function is 
assumed to be of the form = +(y) eia(xc--ct) 

where cc is real and c = c, + ic, is complex. In  much of the work the effect of density 
changes on inertia is neglected. Under these circumstances, the two parameters 
which appear in the differential equation for the disturbance are the wave- 
number a and the Richardson number 

where g is the gravitational constant, p the density, U the mean velocity and y 
the vertical co-ordinate. Some of the important conclusions of theoretical analyses 
made with these restrictions are: 

(i) In  order for a disturbance to grow in time (ci > O), the minimum Richard- 
son number J, < $. 

(ii) For such an unstable disturbance, the net complex velocity c,+ici 
(measured with respect to co-ordinates moving downstream with the arithmetic 
average of the maximum and the minimim mean velocity) is bounded by a semi- 
circle whose radius is I-AU =+(Urnax- Urnin). 

(iii) If ci > 0 it is bounded by 

(iv) Provided that U(y) and J ( y )  are analytic functions of y, astability bound- 
ary is made of neutral modes for which ci = 0 and U equals the wave velocity c, 
somewhere. Unstable modes are contiguous neighbours of the stability boundary. 
(The proof requires some additional restrictions on the admissible class of velo- 
city and density profiles.) 

(v) There usually exist some neutrally stable internal gravity modes which are 
not part of the stability boundary and for which c =/= U(y) everywhere. These are 
similar to the modes which exist in a fluid at  rest. 

These earlier results have been usefully complemented by recent work reported 
by R. E. Kelly and his associates. In  one paper by Maslowe & Thompson (1971) 
both viscosity and heat conduction were taken into account in the numerical 

See, however, Koppel(1964), Gage & Raid (1968), Gage (1971) and Maslowe & Thomp- 
son(1971). 
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solutionof the infinitesimal stabilityof a stratifiedfree shear layer of the Holmboe 
type (i.e. one for which U = 1 + tanh y, p = exp ( - /3 tanh y ) .  The neutral curve 
(a function of the wavenumber a and Reynolds number) was obtained for a 
range of J,, and a Prandtl number = 0.72. 

Two relevant experimental investigations of stability have come to our atten- 
tion. One by Thorpe (1969, 1971) deals with immiscible as well as miscible fluids 
which are accelerated up or down a tilted tube. The second, by Clark (1969), 
was carried out in a water channel in which stratification was achieved by heating 
and in which observations were made of the natural occurrence of waves, of their 
wavelengths and of the Richardson number a t  which they occurred and at which 
they degenerated into non-periodic and into turbulent motion. 

2. The choice of a mean flow 
The experiment reported here related to the stability of free shear layers -ideal- 

izations of the shear flows found in oceanic thermoclines and estuaries. Such 
layers are typically well removed from boundaries, reasonably two-dimensional 
and have one or several inflexion points. Both in the ocean and in the laboratory, 
buoyancy may radically affect the evolution of the mean flow as well as its sta- 
bility, so that it is difficult to select or to generate a typical profile. One may study 
the effect of buoyancy on the stability of specified velocity and density profiles 
only in so far as this effect and the effect of buoyancy upon mean-flow quantities 
can be made to  depend on distinct parameters. It is not clear to what extent 
this state of affairs is typical of natural conditions. In  practically all relevant 
theoretical studies of stability this point has been overlooked, and the mean 
velocity and density profiles have been chosen quite arbitrarily. 

The experiment was designed in such a way that the effect of buoyancy upon 
the distribution of mean shear and mean density was negligible, while its 
effect upon the stability of the flow was controlling and nearly self-similar. The 
experimental flow was an approximation to the following model, considered by 
Schwember (1969). 

Two streams, each with a vertically uniform velocity and density, are brought 
together at  a streamwise station and the resulting discontinuity in mean velocity 
and in density diffuses downstream to form a shear layer and a thermocline of 
finite thickness. Call the streamwise component of mean velocity U(x ,  y ) ,  the 
density p, the velocity and density of the upper stream U,(x) and pl, and those 
of the lower stream Ti,(%) and p2. Defme a ( x )  = +(U.+ U2), p = +(p2+p,) and 
A U  = U, - U2, and assume AUIU < 1, A p / p  < 1. For such a flow, even though, to 
first order in U ,  the density diffusion is unaffected by the velocity profile, J 
varies with x .  However, it is possible to find self-similar velocity and density pro- 
files u = ( U  - c ) / A U ,  0 = (p -p)/Ap, provided that the inviscid interface is 
plane (which requires a large tunnel Froude number), and provided that B and 
A U  vary as xi. Then, assuming that density changes are due to heat, one finds that 

u = g&, Pr)  + Dg&, Pr), 

where 
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Do is a fixed reference velocity at location x,, such that = oo(x/xo)*, and Pr 
is the Prandtl number cp,u/k:; g, is an odd function of 7 (an error function) and, for 
values of Pr and D both of O(l>,t buoyancy adds a negative even contribution to 
g, which is of O(l}. For large values of Pr the effect of buoyancy remains of 0{1} 
only when D/Pr is O{l}. For this type of self-similar flow, J ( y  = 0) is related to the 
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parameter D by D = (eJ(O)/P&)%, 

where e = A U / u ,  so that if the fluid is air it is possible to ensure that D < 1 
and J(0)  = O{ l}, if A U / D  << 1. For any value of D, since both D ands are indepen- 
dent of x, J ( 0 )  is independent of x and J is self-similar, i.e. J = J (7, Pr). However 
for D < 1, u !z gl(q) and J ( y  = 0) = J,. 

The conditions set forth above were generally satisfied. We discuss in $7 the 
extent to which they were not, in particular the anomalous growth of S with x 
and the consequent variations with x of J,. 

In summary, then, the mean flow which the experiment approximates is one 
for which the density profile, the velocity profile and the Richardson number 
profile are all simple functions of y/S(x) and S is a gently increasing function of 
streamwise distance. It must be owned that even with a self-similar flow the varia- 
tions of the local velocity and length scales of the layer introduce complications 
and uncertainties in the interpretation of the disturbance growth data. This is 
discussed in $ 6. 

3. The design of a mean flow 
The mean flow was created in a specially designed wind tunnel. The details of 

this design are given by Scotti (1969)) and only a few of its salient features will 
be discussed here. The tunnel is of the open-return type. Air at room temperature 
enters through square bell-mouth into a settling area separated into two streams 
of equal size by a horizontal splitter plate. The top stream is heated uniformly 
and the bottom stream retains ambient temperature. The two streams merge 
at  the end of the settling section and are accelerated side by side through a con- 
traction section. Downstream, in the rectangular test section these two streams 
are separated by a narrow density gradient which coincides with a shear layer. 
The stratified shear layer remains horizontal through the test section and diffuses 
slowly with streamwise distance. The system is driven by a blower at  the end of 
the test section (see figure 1 for a sketch of the facility). 

The heating is done by two hot-water radiators; the water temperature is 
maintained by a, small heat exchanger. At the exit of the second radiator the 
air temperature in the top channel is uniform and sensibly equal to that of the 
water. The top halves of the tunnel walls are then maintained a t  a temperature 
equal to  that of the top stream by a water jacket. The bottom of the test section 
can be moved up or down so as to provide for small accelerations in the stream- 
wise direction. 

Large mailing tubes were provided upstream of the heater section in both 

-f Here, and throughout the paper, O{sj should simply be taken as ' of magnitude com- 
parable to that of x'. 
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14 in. dia. inailing t 

FIGURE 1. Sketch of the stratified flow tunnel. 

channels. An Q in. cell honeycomb was installed downstream of the heater section. 
This honeycomb was meant to lower the disturbance level on top and to match 
the impedance of the radiators and top honeycomb to the bottom. Two h e  
mesh screens (36 mesh/in., 58% open area) were used both to decrease flow 
inhomogeneities and turbulence and to help the boundary layer along the side 
walls to negotiate the contraction section (as seen in figure 1, the contraction of 
both top and bottom sections begins at  the upstream screen). A third screen 
placed fin.  downstream of the trailing edge of the splitter plate serves the essen- 
tial purpose of erasing the plate wake sufficiently to prevent shear instability of 
the wake in the contraction section (see figure 2) .  

The cross-sectional dimensions of the settling chamber are 36 x 3 6 h .  Those 
of the test section are 8 in. (vertically) by 10 in. Radiative heating of the bottom 
half by the top half of the tunnel walls, not an altogether negligible effect, was 
limited by hand-rubbing the aluminium walls on top and coating the wooden 
bottom surfaces with aluminium foil. 

Thermal characteristics of the tunnel 

The temperature difference between the two streams was typically from 45- 
80" F, corresponding to fractional changes in density of 8-15 yo. The slow temper- 
ature fluctuations of the heating water can be made smaller than rt: 0.5' F. The 
temperature differences in the water between inlet and outlet of theradiator or 
radiator and jacket water are smaller than 0.25" F. The bottom-wall temperature 
can be 4 or 5' in excess of the ambient temperature (a radiative effect), but it has 
been verified that, over the velocity range used, the bottom boundary-layer heat- 
ing does not lead to gravitational instability or free convection up the side walls. 
The thermal turbulence level of the thermocline (the ratio of root-mean-square 
temperature fluctuation amplitude to total temperature difference between top 
and bottom layers) does not exceed 1 %. 

Dynamic characteristics of the tunnel 

It is possible to study the evolution of selected small perturbations only in a flow 
which is almost free of background disturbances. Conventional subsonic wind 
tunnels rely heavily upon the acceleration of the stream through a contraction 
to achieve this. For astream with a vertical density stratification, passage through 
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FIGURE 2. The effect of a screen on the velocity profile in the wake of the splitter plate. 

Probe 1% in. of trailing edge: 0, no screen; 0, screen 4 in. downstream, Re, = 6.65. 

a contraction may, on the other hand, cause very large and unacceptable distur- 
bances downstream. The theory of stratified flow through contractions is still 
largely undeveloped (see, however, Segur 1971) so that our wind tunnel was 
designed with the help of a crude analytical model. This is an inviscid one-dimen- 
sional two-layer channel flow which is enclosed by solid boundaries. The velocity 
of the top stream, U,, and of the bottom stream, U,, are functions of streamwise 
distance x only. The cross-sectional area of the channel is a function of x and the 
cross-sectional geometry is symmetric with respect to the horizontal mid-plane 
7 = 0. The Bernoulli equation for each layer is used (no hydraulic jump is allowed) 
together with one-dimensional continuity for each stream and the condition 
that the pressure is vertically hydrostatic, and therefore continuous at the 
interface. The contraction may be horizontal (height constant), vertical (width 
constant) or square. The analysis is related to that performed by Long (1954) for 
a two-layer flow over a bump on a bottom wall. The results are qualitatively simi- 
lar for all three classes of contractions. The two quantities of interest, the deflexion 
7 of the interface relative to the half height and the velocity jump across the inter- 
face, depend on the reduced Proude numbers 

F2, = PlUiz,/gAP(h-Y)> pi = P,W9AP(h+7)9 
where h is the local channel half-height. If F:-+ Pi > 1 everywhere (supercritical 
flow), r,~ has the sign required to decrease the local discrepancy between the two 
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Froude numbers (i.e. the interface deflects towards the stream with the lower 
Froude number). 7 increases with initial shear but y / h  is always small aftJer a 
sizeable contraction. If F2, + Fi < 1 throughout the contraction, the interface 
deflexion tends to increase the discrepancy between local Froude numbers and 
even small contraction ratios may lead to large values of 7. 

For k’: + FE = 1, theinterfacial slope is infinite (unless the channel has a throat) 
and there is no solution. Thus, according to one-dimensional theory smooth ac- 
celeration of two superposed layers of fluids of different density down a horizontal 
or vertical contraction is not possible unless 

(P21+F3exi t  < 1 or (p:+Fi)entrance > 1. 
Since this parameter varies rapidly with the contraction ratio C (i.e. faster than? 
C2 for horizontal contractions, faster than C2*5 for square contractions, faster 
than C3 for vertical contractions), this criterion seems to forbid a very large range 
of operating conditions; only initially supercritical or extremely subcritical 
flows would be possible. Experimental observations (see figures 3 , 4  and 5, plates 
1, 2 and 3) for different contractions, in which C was widely varied, were quali- 
tatively consistent with the predictions of the simple theory. Whenever a ‘ chok- 
ing’ condition (F = F$+Pi = 1) was approached from above, the interface 
assumed the shape of a stationary wave of large amplitude and as F was further 
reduced a large, almost stagnant region was found to separate the two streams. 
For this and lower values of F, for which the flow remained profoundly disturbed, 
the thermal boundary conditions on the tunnel side walls were unsatisfactory and 
probably dominant; our observations were marred by free convection along the 
walls which introduced strong streamwise v0rticity.S It is clear on more general 
theoretical grounds (e.g. Drazin 1961) that a flow down a horizontal contraction 
in which F < 1 throughout would lead in principle to insignificant deflexion of 
the interface. However, such a flow would have been unsatisfactory for several 
reasons, only one of which will be mentioned here; the shear layer developed 
between the two streams would have been deficient in shear (its Richardson 
number would have been too high for a stability experiment). 

Thus the only satisfactory mode of operation was the supercritical mode, 
k’ > 1 throughout the contraction, which leads to large values of F in the test 
section. For adequate contraction ratios and almost uniform total pressure 

t If h and w are the half-height and width of the channel and, h, and wo these quantities 
at  aninitialsection, then C a  (wo/w), (h,/h)z or (h,/h) forahorizontal, square orverticalcontrac- 
tion respectively. The inequalities are obtained for an initially subcritical flow for which the 
interface deflexion always increases the value of (Pi +Pi). Then for 7 = 0, 

(PI+P,2) N (~iu:+~au3/h 
and lJi and U: are related to h and w and therefore t o  C by one-dimensionalcontinuity. 

$ There is a range of possible behaviour of real fluids, corresponding to the model 
postulated in the simple analysis, around a critical Froude number. If the fluid is thermally 
stratified the boundary conditions along the vertical walls are not compatible with two- 
dimensional flow. In  addition, the fluid density differences are diffusive and regions of 
density intermediate between that of the two streams are created. These are the almost 
stationary bubbles which we observed. If the stratification is achieved by using two different 
and immiscible fluids at the same temperature such branching out of the interface IS not 
possible, and either the boundary conditions are modified at upstresm infinity (blocking) or 
hydraulic jumps occur (see Long 1954). 
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upstream, the velocity difference across the thin thermocline is primarily due 
to the different inertia of the two streams because 7 is very small and thus 
(U,/U2)2 z p2/pl. Thus for a typical density ratio pz/pl = 1.08, (Ul- U,)/IT, 2 0.04. 

The fact that for a supercritical operation the total shear is a small fraction of 
the mean velocity has a number of important experimental consequences. The 
mean flow is then nearly unaffected by buoyancy while the fluctuations are not, 
a circumstance already mentioned as desired during the experiment. The charac- 
teristic time of growth of disturbances scales with S/AU but the disturbances 
propagate downstream a t  a rate z U .  Hence one must observe the growth rate 
over distances scaled with SVlAU, i.e. over many wavelengths. This is a dis- 
advantage because over such distances mean quantities (e.g., and 6 )  tend to 
change appreciably. Measuring the Richardson number (which involves the 
square of the velocity gradient) requires an unusually accurate determination of 
small velocity differences. 

Turbulence level 

Over the range of mean velocities used (1 1 to lSft/s) the turbulence level at  the 
test section was less than 2 x and uniform across the test section, excluding 
the wall boundary layers but including the central area downstream of the settling 
chamber splitter plate. Heating the upper stream did not change the turbulence 
level in the homogeneous regions of the flow. While background turbulence 
measurements were not undertaken within the thermocline itself, its turbulence 
level based, more appropriately, on AU was estimated from temperature fluctua- 
tion measurements to be of the order of 2 x 10-4UlAU z 53 x It increased 
with streamwise distance and was a function of the Richardson number. 

4. Generation of disturbances 
For practical reasons, a small disturbance is always generated at a fixed station 

and it is its behaviour downstream of this station which is the object of observa- 
tions, rather than its temporal behaviour everywhere (as assumed in the bulk of 
stability theory). In  order for the stability problem to be well posed experimen- 
tally, the origin of the disturbance must be well confined in space. In  our case, for 
instance, disturbing the free stream on either side of the sheared thermocline . 
with an oscillating ribbon or airfoil results in a mixed experimental problem in 
which the shear layer oscillations grow partly as a result of instability and partly 
as a response to a forcing function along its entire length (in so far as the wake of 
the oscillator in the free stream is poorly damped). Thus the disturbances should 
be introduced within the shear layer, but the generator should not alter the mean 
flow of the shear layer-a very stringent requirement in our case since, for instance, 
a 1 % wake velocity defect would change the shear by about 20 %. Fortunately, 
the fact that the layer is stratified allows the generation of special disturbances 
with convenient properties. These are internal waves which can be generated 
upstream of the test section by the vertical oscillation of a very fine wire spanning 
the tunnel in the thermocline. The wire used was made of 0.004in. diameter steel 
and strung between slides located in the side walls of the contraction section. 
It was activated by a large electromagnetic vibration exciter. The length of the 
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FIGURE 7. A check on the linearity of the disturbances. 
+ , 80.9 C / S ;  0, 39.7 C/S; 0, 20.0 C/S. 

wire was about 18in. and in so far as the maximum frequency required (about 
200 c/s) was well below the pitch of the wire (about 700 CIS), the wire displacement 
was closely uniform and in phase along its total span. A subsequent analysis 
of the effect of an oscillating line force in a two-dimensional uniform density 
gradient and uniform velocity was made by Teuscher (private communication). 
It indicates that for the flow conditions and the frequency range of the experi- 
ment internal waves are propagated downstream within a beam originating a t  the 
wire and encompassing an angle of about 2", so that the wave energy is entirely 
beamed downstream within the thermocline. The waves are eventually reflected 
by the varying density gradient and trapped within the thermocline. As they 
travel downstream they would tend to assume the structure of the (neutral) eigen- 
modes corresponding to the thermocline structure if there were no shear. In  fact, 
they find themselves in a flow with a steadily decreasing Richardson number until 
they reach the test section. Thus they evolve progressively into instability waves. 

It was determined that the wake of the wire was undetectable at  the entrance 
to the test section, i.e. that the wake defect was less than l O - 4 D .  It was observed 
that the wire was unable to disturb any part of the flow in the test section unless 
it was vibrated within the thermocline. At the beginning of the test section, the 
maximum amplitude of the disturbance appeared to occur at the same relative 
position within the thermocline as that of the wire, a result which probably 
indicates, as suggested in Teuscher's computation, that the beam of internal 
waves had not spread beyond the central (uniform) part of the thermocline. 

Friction in the dove-tailed slides to which the wire was attached caused the 
wire to be driven in a non-sinusoidal manner, i.e. it  introduced higher harmonics 
of the motion (see figure 6, plate 4). These are apparent both from the output 
of the displacement transducer attached to  the slides and from the temperature- 
fluctuation records measured at  the entrance of the test section. However, these 
higher frequency components are generally outside the range of unstable modes 
and attenuate within a short distance, leaving a clean (sinusoidal) wave which 
grows or is attenuated at a slower rate. 

The amplitude of the disturbances was chosen to be large enough for them to 
dominate background noise, but small enough for them t o  grow in a linear way. 
The linearity was assessed as shown in figure 7, a plot of the ratio of disturbance 
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amplitude at two streamwise stations against upstream amplitude. The wire 
displacement amplitude was of the order of two wire diameters, or 0.008in. A 
typical wave displacement 7 was 0.004 in. for a wavelength of about 4 in. 

5. Mean measurements 
Temperature 

The temperature of solid surfaces was measured with copper-constantan thermo- 
couples and that of the stream by 10-4in. diameter 10 yo Rh-platinum wires 
operated at low current. For steady measurements involving large temperature 
differences the resistance was assumed t o  be a quadratic function of temperature. 
The constants were determined experimentally; temperature variations of 0-3" F 
could be detected. For fluctuation measurements, the relationship is linearized 
as 

where y is the first coefficient of resistance, 
8 the fluctuating temperature. 

voltage across the wire and I the current, 

R, = ~ 2 ~ 0 ,  

the local mean wire resistance and 

The wire is part of a constant current-system. Hence if e is the fluctuating 

B = e/IR,y. 

Mean velocity 

The determination of Richardson number requires the computation of the square 
of the local mean shear aU/ay. Since the total velocity variation is typically 4-5 yo 
of the mean velocity an especially accurate method of measuring velocity varia- 
tions had to be devised. The method used is an elaboration of the vortex-shedding 
cylinder method in which the frequency of vortex shedding of a long cylinder 
placed across the flow isrelated to the stream velocity. The relatively narrow range 
of velocities used and the fact that velocity and viscosity increase or decrease 
together during a traverse allow cylinders to operate over a narrow Reynolds 
number range. The range for which Roshko's (1954) Strouhal number-Rey- 
nolds number relationship is accurate (Tritton 1959; Webster 1964) turned out 
to  be most desirable, both because it is a range for which the inherent uncertainty 
in shedding frequency is minimum and because it leads to cylinders whose 
diameter is small enough to give good spatial resolution (typically 8 or 10 x 
in.). During a traverse the Reynolds number could always be confined to 
50 Q Re < 85. The frequency of shedding was measured by a hot wire placed 
parallel t o  the cylinder axis and a few diameters downstream of it, and approxi- 
mately one cylinder radius above or below the cylinder axis. The frequency of 
shedding, which was of the order of 2000c/s, was measured by a counter and 
averaged over 1 or 10 s. The local temperature was also measured to determine 
the viscosity. 

Such an arrangement typically yields fluctuations in recorded frequency 
of the order of 0.5-1 yo. The corresponding uncertainty in the value of velocity is 
comparable. This is clearly excessive since, as was mentioned above, the maxi- 
mum velocity variation at a given time is about 5 %. It was conjectured that the 
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uncertainty in shedding frequency was caused by small variations in the tunnel 
pressure which affected thevelocity of the tunneleverywhere, at the same time and 
almost by the same amount. This led us to the use of a comparative method which 
consists of using two vortex shedders, one a stationary free-stream probe, the other 
a traversing probe, and reading directly the value of the ratio of the two shedding 
frequencies as well as the shedding frequency of the stationary probe. The theory 
of this comparative method is given in the appendix, and predicts that fractional 
errors in the measurement of the difference between free-stream and shear-layer 
velocity (if made as described) are of the same order as fractional errors in the 
measurement of free-stream velocity itself, while, of course, a conventional 
measurement would lead to fractional errors in velooity differences which would 
be greater by the factor U / A U ,  i.e. about 25 times worse. The practice fully con- 
firms the computations in that Reynolds number range. The signals from two 
similar shedding probes were fed simultaneously to an electronic counter which 
automatically yielded the ratio of their frequencies. This could be measured 
reproducibly to an accuracy of 2 x lo-*. This result indicates not only that the 
cause of the small variations in shedding frequency was correctly identified, but 
also that, around a Reynolds number of 60, the shedding frequency is determined 
with remarkably little uncertainty by that parameter.? 

Since the vortex shedder was used in flows which were both sheared and strati- 
fied, the effect of both of these features should be briefly discussed. It was deter- 
mined experimentally that in the Reynolds number range used the effect of 
shear was to raise the shedding frequency, the fractional change in frequency 
being roughly equal to the value of the non-dimensional parameter ( d / U )  (aU/ay).  
Typically this should lead to a maximum error (at the level of maximum shear) 
of O(O.01 A U }  and to a negligible error in the value of the maximum slope aU/ay. 
No correction was provided for this error. The effect of stratification on shedding 
frequency should depend on the Froude number based on cylinder diameter, 
[(gd2/pU2) (&4&~)]-1, which is 0(106}. Thus the stratification is likely to be far 
too weak to affect the shedding rate. Again the effect would be even smaller on 
the main quantity of interest, (i3U/i+y)max. 

Finally, an internal joint check of the lack of importance of shear and density 
stratifications, as well as of the accuracy of Roshko’s formula relating Strouhal 
number and Reynolds number, was performed by using cylinders of various 
sizes in and out of %he sheared thermocline and verifying that they yielded the 
same velocity at  the same point in space. Whatever errors occurred were random 
and did not exceed 0.5 %. 

6. Disturbance measurements 
In  principle it is possible to measure the two velocity fluctuations u’ and w’, 

and the temperature fluctuations 0 which are caused a t  any station in and about 
the shear layer by the passage of the wire-induced infinitesimal wave. One may 
record the streamwise rate of growth or decay of these fluctuations and infer from 

t Additional measurements indicate that the root-mean-square of the deviation from a 
mean shedding frequency reaches a fairly sharp minimum at Re = 60. 
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these observations whether the disturbance is stable or unstable. In  practice, 
one circumstance both limits the choice of the fluctuation which may be recorded 
with some accuracy and complicates the task of interpreting this or other 
measurements in terms of stability. The complicating factor is the large value 
of UlAU. A hot-wire anemometer is sensitive both to temperature fluctuations 
and to velocity fluctuations and, when the fractional fluctuations in temperature 
and jn velocity are of the same order, the hot-wire responds primarily to temper- 
ature fluctuations, even if it is operated at the maximum possible temperature. 
This is particularly true at  the velocjtieswhich were typical of the experiment (the 
higher +he velocity, the less sensitive a hot wire is to a given fractional change in 
velocity). Thus fluctuating velocity measurements would have been unaccept- 
ably inaccurate, and only temperature fluctuations were recorded by a hot-wire 
anemometer, operated at a low overheat ratio, at the mid-plane of the undis- 
turbed thermocline. 

The stability of disturbances and the streamwise growth of 
temperature jluctuations 

For a mean flow which is unaccelerated and strictly parallel, one may characteri- 
ize the stability problem by the exponential growth rate of the amplitude of one 
of several perturbed quantities such as the temperature fluctuation 8 or the per- 
turbed velocity components. When these are small, they all have the form 

fj(x, y, t )  = g,.(y) e(bx-iwt), 

where ,8 and w have the same values for all indices j. The wavenumber is then 
the imaginary part of ,8 and the spatial growth rate is the real part of p. A flow 
is unstable if /3, > 0 in the sense that the energy of the disturbance which is pro- 
portional to exp (2P,z) is an increasing function of x. However, the experimental 
flow, while approximately self-similar, is x-dependent both because its thickness 
grows and because it is convectively accelerated. Under these circumstances, 
not only do the various perturbation quantities grow at different rates with x, 
but the identification of stability or instability with decay or growth of a given 
kind of disturbance is erroneous or at least inaccurate. In  other words, the de- 
finition of a neutral disturbance is far from obvious. 

Two problems should be distinguished. The first is that the theory of the sta- 
bility of this type of self-similar mean flow does not apparently lead t o  an eigen- 
value problem and is not available. At best one might expect that the amplitude 
of a quantity which is invariant for a neutral disturbance would grow approxi- 
mately exponentially for an unstable case. This difficulty is not an experimental 
one and is not handled here, although a formal assumption of exponential growth 
rate is eventually made for purposes of comparison with the simple theory. 

The second problem is that we are in need of a definition of a neutrally stable 
flow which can be translated in terms of measurable quantities. Such a definition 
was sought by analogy with other flows for which it is implicitly recognized that 
the non-uniform mean flow is energetically passive, i.e. that disturbances orwaves 
merely propagate through it and that any apparent change in the disturbance 
energy is a result of viewing the disturbance in an accelerated reference frame. 
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Longuet-Higgins & Stewart (1960, 1961) and Whitham (1962) have discussed 
such cases involving surface water waves propagating through either longer 
waves or currents which are gradually non-uniform in the direction of propa- 
gation. The approach of Whitham, which seems to us to be the more fundamental, 
consists essentially of two steps. 

First, mass, momentum and energy conservation laws are written for the total 
flow in integral form and the separation of the flow into mean quantities and 
fluctuating quantities is introduced into the conservation integral. This first 
step would evidently be identical in our case for neutrally stable, damped or 
unstable disturbances. 

Second, the fluctuating quantities which appear in the conservation laws are 
evaluated from the second-order solution of the problem of propagation through 
a uniform medium (Stokes’s waves). The corresponding task would be to  evalu- 
ate bhese quantities from the neutral eigenfunctions of the stability problem in a, 
parallel uniform flow. The result would be a first-order conservation statement 
for attributes of a neutral disturbance in a non-uniform flow. This result naturally 
depends on the type of mean-flow non-homogeneity which is present, and which 
is presumed known. Whitham gives several examples of this approach (some 
of which were previously treated by Longuet-Higgins & Stewart). For instance, 
for waves superposed on a free-surface flow U ( x )  of varying depth h,(z) and 
continuity satisfied by inflow from below, the invariant obtained is 

where 

E being the potential energy, a the wave amplitude, C, the group velocity and 
C the wave velocity. To obtain a corresponding expression for the neutral eigen- 
functions of the stability problems seems to be an ambitious undertaking because 
U is a function both of x and y, and because the eigenfunctions may have to be 
known to second order. Instead, we have made an admittedly inexact estimate of 
the error involved by defbing as neutral disturbances those whose potential 
energy E (when averaged over a period) is independent of x. This was done by 
noting that for the various examples cited by Whitham S is of the order of E,  
so that for our case (for which Cg < U )  the invariant probably has the form 

-dE d u  
dx ax 

U-+yE- = 0, 

where y is O(1). We have then compared measured fractional changes in E for an 
unstable disturbance with fractional changes in over the same length. The 
result is, fortunabely, that for a typical unstable disturbance varies decidedly 
less than E .  For the lowest values of the Richardson number used (J  g 0.07), 
fractional changes in U are typically only 5 %  of fractional changes in E ,  the 
maximum ratio occurring for large and small values of a for which the data reduc- 
tion is also inaccurate on other counts. For J 0.17, the growth rates being less, 
the relative importance of the second term in (6.1) is greater (i.e. the growth rate 
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computation is more uncertain on a percentage basis), but the absolute value of 
the uncertainty in the true growth rate remains about the same. Thus it seems 
likely that the error involved in assuming that dE/dx = 0 defines a neutrally 
stable disturbance for the purpose of computing growth rates is tolerable and of 
the same order as, or smaller than, other experimental errors which are mentioned 
later. We note, however, that this error is systematic and tends to underestimate 
the growth rate of unstable disturbances (and to overestimate the decay rate of 
stable ones). 

The data was thus reduced by assuming that the growth rate G was given by 

1 dE 
E dx * 

G = - -  

Now, if P is the local average pressure, T the locaI average temperatme, and p 
and 7 the temperature and small vertical displacement of a particle above alevel 
at  which its temperature is T, the average disturbance potential energy is 

where the overbar denotes a time average. We thus need to relate 7 to 8, the 
(measured) temperature fluctuation at  a point. This is easily done if we assume 
that the temperature or density is only a weakly diffusive property of the fluid 
particles. Starting with an adequate approximation to the thermal equalion: 

aT/at + ( 0.  v) P = KWP, (6.2) 

where 
separating mean and fluctuating quantities: 

is temperature, K the thermal diffusivity, 0 the velocity (0, r), and 

To the same approximation as is used in (6.4)) the vertical velocity of a fluid 
particle is given in terms of its displacement 7 by 

D7 a7 a7 
ot= =-+u- at ax' 

If (u, 697) = &o(Y), eo(Y),  7o(Y))  e(@iwt)9 

then w = yo( U p  - iw)  and in the thermocline's plane of symmetry 

Now /3 is a complex quantity, /, + ipi, since in the experiment the disturbances 
grow or decay in space, rather than in time. Nevertheless it is easy to show that, 
for the case in which A U / a  is very small, the eigenvalue problem is formally 
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identical to that of a temporal stability problem except in the neighbourhood 
of pi = 0, so that the general results of the temporal analysis (Miles 1963) can 
be used for order-of-magnitude evaluation. Thus 

(U - u/pi)2 + (o/p,)2 < {&A u}’ (6.7) 

and, writing the real and the imaginary parts of (6.6) separately and making 
systematic use of the inequality (6.7), we get 

( 6 . 8 ~ )  

(6 .8b)  

We non-dimensionalize by using 6T = AT/(aT/ay)max as a length scale and A U 
as a velocity scale. With Pr = v/K, Re, = (&,AU)/V, (6.8) becomes 

where 8, = 8,+iOi. Thus if Pr = O{l} and PrRe(U/AU) (braT) B I ,  we can write 
approximately 

Typically, PrRe ( U / A U )  z 800 and/3,6, z 0-1, sb that (6.9) is adequate for most 
of our measurements. Whenever pray is found experimentally to be small, either 
because ,8i&,, is large or small or because Jo is sufficiently large t o  allow only weak 
instability, little reliance can be placed on numerical estimates of growth rates 
which are based on the amplitude of 8. This is not believed to be a serious error for 
any of the data presented but may have been responsible for some scatter in 
some preliminary data taken around Jo = 0.25. 

Determination of pi, cs and c 

It is easy to determine pi to sufficient accuracy. This follows from the fact that o 
is measured directly and that according to the semicircle theorem 

U - c  6 (&AU). 

Hence the maximum error incurred in writing pi is AU/2U, or about 2 %. 
A direct determination of pi (by using two probes) verified its value in a few cases 
but was not more accurate. Since we devised no especially accurate means of 
measuring directly, no value of either the phase velocity or the group velocity 
can be given; i.e. to our experimental accuracy, c, z c z U. - 

7. Experimental results: mean flow 
Figure 8 shows a typical velocity and density profile at  a given streamwise 

station. Successive non-dimensional profiles of temperature at  different stream- 
wise stations are shown in figures 9 and 10. Their close self-similarity is quite 
evident. The same is true of velocity profiles at almost all Jo (figures I f ,  12, 13). 

33 F L M  52 
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u - B (ft/s) 

FIC+URE 8. A typical set of mean profiles at a station. + , temperature; V,  velocity. 

3.0 I l l l I I I I I  

FIGURE 9. Check on self-similarity : temperature profiles at several streamwise ststions. 

x (in.) ST (in.) Jo  
0 12.0 0-413 0.070 
v 26.0 0.435 0.077 
A 37.75 0.486 0.090 

One notes, however, that some profiles deviate somewhat from the self-similar 
ones. Iti was verified that these relate to flow conditions for which the Froude 
number as defined in Q 3 was most nearly critical at  the beginning of the contrac- 
tion section, where the two sbreams merge. In  other words, the distribution of the 
velocity and temperature profiles in the test section was most likely the result of 
the distortion of the interfacial flow whenever the Froude number fell below a 
limiting value. For an air-heated tunnel this distortion is most likely to take the 
form of a stationary separated interfacial bubble which modifies the initial con- 
ditiion for the shear layer. 
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FIGURE 10. Check on self-similarity : temperature profiles at several streamwise stations. 

0 
v 
a 

5 

;3r 0.1 
2 

X (in.) ST (in.) JO 

12.0 0.437 0.151 
26.0 0.507 0.174 
37.75 0.582 0.210 

2( U - 0) lAU 

FIGURE 11. Check on self-similarity: velocity profiles at several streamwise stations. 

x (in.) ST (in.) J O  

0 12.0 0.398 0.070 
V 26.0 0.426 0.077 
a 37-75 0.488 0.090 

We have stated that if tihe mixing layers originated from a sharp discontinuity 
in mean velocity and mean density between two uniform stn-eams, both density 
and velocity profiles would in theory be described by an error function (provided 
that AUIU < I). Figure 14 shows that such a function is a good approximation 
to the profile. 

33-2 
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FIGURE 12. Check on self-similarity : velocity profiles at  several streamwise stations. 

a 
v 
0 

D 

h 
c.l 

2 

x(in.) &(in.) 

12.0 0.410 
26.0 0.445 
37.75 0.548 

JO 

0.151 
0.174 
0.210 

-3.01 I '  I I I I I I ' '  
- 1.0 0 1-0 

2( U - 0)1au 
FIGURE 13. Check on self-similarity : velocity profiles at several streamwise stations. 

x(in.) Su (in.) J O  

a 12.0 0.422 0.260 
V 26.0 0-431 0.240 
0 37.75 0.476 0.260 

Richardson number distribution 

Several vertical distributions of Richardson numbers are shown in figures 15 
and 16. They are characteristically flat around y = 0 and this is also typical of the 
theoretical J distribution. For all of them, J, (the minimum value of J )  is found t o  
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FIGURE 14. Temperature profiles: comparison with theory (error function). 

x (in.) &(in.) J ,  

0 12.0 0.497 0.460 
v 12.0 0.449 0.270 
A 12.0 0.437 0-151 
0 12.0 0-387 0,070 
0 12.0 0.413 0.070 

be ab  y = 0, a result which one would expect from the theory for a gas (Pr  < 1). 
In  some cases, the distributions are closely self-similar and symmetric, in others 
some asymmetry is present, no doubt because the initial mean height of the 
thermocline and that of the shear layer fail to coincide precisely. 

The streamwise variation of J, (which ideally should be constant) is shown in 
figure 17. In  general it is seen that the two free streams were not accelerated 
qujte enough, especially downstream, to compensate for the growth of the mixing 
layers. This growth is shown in figure 18. One notes that 6, and 6, grow more than 
linearly with x, a result which is unexpected in view of the discussion of 8 2. It was 
first assumed that this excessive growth rate of a clearly laminar shear layer was 
due to a lateral convergence of the thermocline as a result of its interaction with 
the side walls. It is not possible to rule out such an interaction, but a direct 
measurement of the horizontal contraction of streamlines in the thermocline? 
failed to show sufficient departure from two-dimensionality to explain the growth 
rate of the shear and of the thermal layers. 

t Using a small weather vane with a mirror and a laser beam. 
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V 
n 

10.0 

J I J O  

FIGURE 15. The Richardson number distribution. 

x (in.) ST (in.) ST (in-) 
12.0 0.387 0.356 
26.0 0.438 0.408 
37.75 0.513 0.483 

Jo  
0.070 
0.071 
0.091 

JIJO 

FIGURE 16. The Richardson number distribution. 

x (in.) ST (in.) ST (in.) 
a 12.0 0.437 0.410 
V 26.0 0.479 0.431 
0 37-75 0.507 0.470 

Jll 

0.151 
0.174 
0.210 
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8. Stability measurements 
For Richardson numbers such that 0.45 < J, 6 0.76, all disturbances which 

were introduced (for which 0.15 6 a < 2.8) were found to be attenuated (in the 
sense of $5) as they travelled down the test section. In  terms of the temporal 
theory, the decay rates aci were independenb of J,, as shown in figure 19. 

It was found that when J, < 4, the energy of disturbances increased with 
streamwise distance within a narrow range of a. At values of J, which were very 
close to $, the measurements were scattered, the growth or decay rate of E was 
small and the data reduction procedure was evidently not sufficiently accurate. 
At smaller values of J, growth rates were better defined and the range of unstable 
wavelengths increased. Table 1 and figure 20 summarize the growth rate for three 
values of J, according to a temporal growth interpretation. These values were 
obtained from measurements of 6 and aT/ay at  several streamwise stations from 
which E can be calculated by the method discussed in 8 6. The relationship be- 
tween the time rate of growth of the disturbance energy E and the growth ci is 
assumed to be given by 

where, in view of the large value of the ratio UlAU, no distinction need be made 
between 0, c, and the group velocity cg. The data presented are non-dimensional- 
ized with respect to the local shear thickness 8, = AU/(aU/ay)max and the shear 
A U ;  for instance, a = pis,. The Reynolds number is defined as (AU8,,)/4v,  as 
is the prevailing custom in theoretical computations (cf. Maslowe & Thompson 
1971). The streamwise derivatives of fluctuation amplitude and of mean density 
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Average J ,  g 0.076 

f (CIS) 

20 
29.9 
49.5 
69.6 
85.9 

101 
120 
141 
165.7 

a 

0.125 
0.186 
0.307 
0,434 
0.534 
0.630 
0.748 
0.880 
1.05 

Average J, = 0.105 

uci 
0-032 
0.0345 
0.0854 
0.133 
0.136 
0-134 
0.1315 
0.0935 
0.0446 

a 

0.13 
0.207 
0.275 
0.412 
0.561 
0.70 
0.84 

0.207 
0.56 
0.835 
0.40 

Average J, 0.170 

act 

0.0145 
0.035 
0.062 
0-077 
0.090 
0.078 
0.082 

0.038 
0-079 
0.0465 
0.0228 

f ( C b )  

25.05 
39.70 
54.40 
69-60 
85.90 

140.8 

a 

0.198 
0.310 
0.420 
0.540 
0.670 
1.10 

ClCi 

0.013 
0.035 
0.053 
0.057 
0-002 

- 0.013 

TABLE 1. GrowC, rate for unstak-2 waves 

gradient are evaluated from the average of differences at  several stations (three 
stations for most of the data, four for some). I n  no case was an inconsistency be- 
tween such averages and individual differences larger than a reasonable root- 
mean-square reading error, so that no variation in the growth rate with stream- 
wise location of the measurement can be inferred from the data.t$ 

This statement is at  variance with a remark of Scotti (1969, p. 54). Scotti's data also 
contained some errors in the evaluation of the mean Richardson number. 

$ As noted before, because AUlC Q 1 only a small growth rate is apparent over a wave- 
length. The disturbances remain small in the sense of linear theory at  all measuring sections. 
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9. Accuracy of the measurements 

fluctuating measurements. 
Mean measurements 

Fractional errors in mean velocity are given as 1 %, in mean velocity gradient as 
3 % and in mean Richardson number as 8 %. The major source of uncertainty 
for the mean measurements is a slow variation of the temperatures of the top 
and of the bottom air layers. 

Scotti (1969) has provided an estimate of random errors for the mean and the 

Fluctuations measurements 

Maximum fractional error in non-dimensional wavenumber is estimated at  
? 1 yo and that in reduced aci as & 21 %. In  all cases where measurements 
were repeated, these estimates seemed to be quite conservative. 

10. Comparison with theoretical predictions 
In  order to set the experimental results and the theoretical expectations side 

by side, we need to keep in mind some of the major features of the experiments 
which distinguish them from the models envisioned in the simplest theory, that 
for inviscid temporally growing disturbances in a sheared thermocline without 
horizontal boundaries and for which the Boussinesq approximation is made. 
These features are: 

(i) The disturbances are growing spatially, not temporally. 
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a CL. 

FIGURE 21. Comparison of theoretical growth rates for inviscid disturbances with hyper- 
bolic tangent and with error function profiles (fromMaslowe 1969).----, Holmboe function, 

, error function; ( a )  J ,  = 0.16; ( b )  J ,  = 0.07. 

(ii) The Reynolds number of the experimental flow is relatively small 

(iii) The flow has horizontal boundaries five inches above and below the 

(iv) The density variation across the layer is not very small. 
The results of recent theoretical investigations concerning some of these com- 

plications are fortunately most probably applicable t o  our case, and we shall 
adapt these results to show that only feature (ii) above affected the experimental 
results enough to require theoretical correction. 

To start with, Hazel (1972) has computed the temporal growth rates and the 
neutral curve for the simple parallel inviscid case when both the velocity and 
density profiles are error functions as in our case. He compared the neutral curve 
and the eigenvalues to those corresponding to the case of a hyperbolic tangent 
velocity and (logarithmic) density profiles. The comparison is also made by Mas- 
lowe (1969), for two values of J, typical of our experiment, in terms of the growth 
rate aci as a function of a. The results are encouragingly similar (figure 21) and 
suggest that conclusions reached for the Holmboe model should hold in our case. 

(i) Spatial us. temporal growth 

In  the experiment, an elementary unstable disturbance could be represented by 

$( y ,  z, t )  = $( y )  eaz-iot, 

where p is complex and w is real. Such an eigenvalue problem is formally different 

$( y ,  2, t )  = q5( y )  ei@z-d), 
from that for which 

where a is real and c complex (the temporal problem). The spatial problem has 
been treated by Maslowe & Kelly (1971) but it would seem that the model 
they had in mind is not directly applicable to our case, because in the experiment 
AUlU -g 1. In  fact, it can easiIy be shown that if AU/C -+ 0, and provided that 
the wave-number Fi is not too small, the differential equation for the spatial 

(30 < Re < 70). 

thermocline. 
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0 0.2 0.4 0.6 0.8 1.0 1.2 

U 

FIGURE 22. Growth rates for J ,  N 0.076. Comparison with theory for J ,  g 0.07. -, 
error function, Re = m; ---- , Holmboe function, Re = 53; 0, experiment, J ,  g 0-076, 
Re g 54.0. 
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 FIGURE^^. Growthrates for J ,  2 0.17. Comparison with theory for J ,  N 0.15.- , error 
function, Re = a; Holmboe function, Re = 33; 0, experiment, J ,  = 0-17, Re = 33. 

case tends to that for the temporal case with /3t taking the role of a2, and 
that of c. I n  the same limit, u/U -f pi. For the values of AUIU typical of the 
experiment and omitting values of pis, < 1 (say pisT < 0.02), which are 
excluded on other grounds as well, we should expect very close modelling from 
a temporal case. 

(ii) T h e  eflect of af ini te  Reynolds number 

Maslowe & Thompson (1971) have solved numerically the stability equations 
including the effects of both viscosity and heat conductivity on the (temporally 
growing) disturbance. The profiles were those of Holmboe. They find that at  
R e  = 50, the critical J, = 0.22. For J, = 0.15 and 0.07, we have interpolated their 
plot of am. Re with ci as a parameter to obtain curves of aci vs. a characteristic 
of the Reynolds numbers of the experiment. These plots are shown together with 
the experimental point in figures 22 and 23. In both cases the viscous correction is 
far from negligible. 

(iii) T h e  effect of horizontal boundaries 

For all the data of the experiment, the ratio of the shear-layer thickness to its 
distance 4 h from the top or the bottom wall is about one-tenth. Hazel (1972) has 
investigated numerically the effect of such boundaries, for the Holmboe case, on 
the shape of the stability boundary in the J,, a plane. He finds that short waves 
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are stabilized and long waves destabilized by horizontal boundaries at  a b i t e  
distance from thelayer. The long-wave result is shown to be in accordancewith the 
result of a simple solution for a discontinuous profile and density step (cf. Lamb 
1932). However, for h/2S = 10, the short waves are unaffected and the stability 
boundary differs sensibly from that for unbounded space only for a < 0.13, a 
region for which, as we have seen, our data are really not credible on several 
grounds. Thus we conclude that the data presented is probably substantially 
free from systematic errors due to the finite vertical extent of the flow. 

(iv) T h e  effect of Jinite density differences 

One may wonder whether the Boussinesq approximation which is made by Hazel 
(1972) in the computations which yield figure 21 is accurate enough for a flow 
wherein the density varies typically by 8 yo. Maslowe (1969) gives numerical 
solutions of the stability equation for the case of zero buoyancy but finite 
(inertial) effects of vertical density gradient. His results, which are not numeric- 
ally applicable to our case (since in the calculations J, = O ) ,  nevertheless suggest 
that for a density change of 8% (which in his terminology corresponds to a 
p = 0.04) neither the rate of growth nor the range of unstable wavenumbers are 
appreciably affected. For instance, the spatial growth rate of the most unstable 
wave at J, = 0 is increased by about 2 yo. Such an effect would be too small to 
be detected. 

The plots of figures 22 and 23 suggest some systematic differences between 
the data and the viscous predictions of the temporal theory. The most significant 
one is that the growth rate curves are shifted to the right, i.e. that according to 
the experiment long waves grow somewhat slower and short waves faster than 
the theory predicts. Some (short) waves for which the theory indicates stability 
were found to grow. The maximum growth rate at  a given Richardson number 
seems rather too large also, but in view of the uncertainty in data reduction, the 
discrepancy should not be taken too seriously. The distortion of the growth curves 
mentioned above may be due to rather small idiosyncrasies of the Richardson 
number distribution. It is known from the work of Miles (1963) and Hazel (1972) 
that the neutral curve is quite sensitive to relatively minor changes in the density 
distribution if these introduce an additional length scale. While our velocity and 
density profiles are likely to have only one inflexion point each, their maximum 
slopeisnot in general found at precisely the same height, and as a result the Rich- 
ardson number distribution is not precisely symmetric. This was discussed in $7 .  

A straight-line plot of ( C I C ~ ) ~ ~ ~ Z I S .  J ,  (figure 24) gives an extrapolated value of 
0.22 for the critical Richardson number. The theoretical value for the Holmboe 
profile at  a Reynolds number of 50 is also about 0.22. 

11. Conclusions 
The results of the experiment confirm quantitatively, with satisfactory accu- 

racy, the predicted effect of Richardson number upon the stability of small dis- 
turbances in a free shear layer. The growth rates are in crude agreement with 
predictions which take into account the effect of diffusion and viscosity upon the 
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FIGURE 24. The inferred critical Richardson number. For this Reynolds number range, 
according to diffusive and viscous theory, the Holmboe profile is critical at Jo = 0.22, 
cf. Maslowe & Thompson. 

dynamics of the disturbances. The accuracy of the growth rate data is not as high 
as one mightwish but it is probably sufficient to suggest that the length of the most 
rapidly growing waves is noticeably affected by relatively minor variations in the 
mean density and velocity profiles. 
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Appendix. The advantage of a dual-vortex shedding anemometer 
We postulate that random variations in the shedding frequency of a measuring 

cylinder are mostly due to slow variations in the pressure drop between the end 
of the settling chamber and the test section. The static pressure is assumed 
independent of y. 

Let the shedding frequency of a given cylinder be a slowly varying function 
oftime: 

Similarly, the pressure drop and the average of the top and bottom stream velo- 
cities are 

The brackets ( ) indicate a time average. 

on velocity is 

f ( Y ,  t )  = P ( Y )  F1-t q t ,  Y)l. 

AP(t) = (AP) [I 1- cP(t)l7 o(t) = (0)[1 +%(t)l. 

The cylinder shedding is quasi-steady and if the steady dependenceof frequency 

P(y)  = (w, u, y )  
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then 

Now when g varies, the velocity at  a given y is affected both directly and indirect- 
ly (through variations in 8). Thus, in the limit of fluctuations in the self-similar 
layer of Q 2, for which S N u* and D, AU, all vary in phase and by the small frac- 
tional amount eu, a Taylor series expansion of U around ( U )  leads to the result 

The second term in the bracket vanishes for y = 0 and y -+ k 00, and in any case 
is of O{AU/U}  compared with the first. Hence to order A U / U ,  eu g EV. 

u z ( u) + S,CU + +$a( u)/ayi. 

1 -g2 Since & = z P  > 

€ p  = 2€,-, € p  g 2qJ. (W 
Now consider two cylinders shedding simultaneously. The ratio of their frequen- 
cies fl and f z  is given by 

in view of (A 1) and (A2). Alternatively 

[alnG/aln U];; = a ( a h  G/aln U )  SU,  but 

where SU is the velocity difference at the two points y1 and yz. Experimentally, 
(a/aU) (aln G/aln U )  < O{l/a} for any Reynolds number. For the Reynolds 
number used it is approximately @7/U, so 

au 

where T = O(1). Hence fractional variations in fi/fz are of O ( + T E ~ A U / U } ,  while 
variations in fl or fz are of O{ep}. To obbain (SU) we measure both f, (from which 
we compute U,, a free-stream velocity) and fl/f2 directly. Then we find 

= (4 - Fz) E l +  0{.,>1 
whereas, if the measurements of fl andf, are made separately, 

In  theory, the accuracy is thus improved by a factor of the order of 25. 

There is, however, an additional term: if T = (T)[l +€TI, this term is 

fi-fi = F1-4) 11 + O { @ / A W  

(u)  ac a v  aT a7 
-%Au---- G avaTasaU’  

but it turns out to be small for the same reason as the corresponding velocity term (see 
next paragraph). 
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FIGURE 6. Oscilloscope traces of forced disturbance. (i) Displacement of oscillating piston; 
(ii) z = 12in., (iii) z = 43, (iv) z = 72. ( a ) f  = 111.2c/s, h = 1.62in., ( b ) f  = 80.9, h = 2.84, 
( c ) f  = 39.6, h = 4.64. 
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